Challenges in Accelerating Ocean and Ice Models

Phil Jones, LANL
Project Lead
Climate, Ocean and Sea Ice Modeling (COSIM)

Community Earth System Model

High Resolution Ocean/Coupled

Ocean eddies
(~20-50km) important
for realistic
representation of
ocean circulation

Current state: 2-3
Simulated years per
CPU day
3-10x permits real
science, limited
ensembles
Longer time

Hurricane storm track and ocean temperature from fully coupled high-res simulation (25km atm, 10km ocean resolutions).

Sea Ice and Land Ice

- Community Ice Sheet Model (CISM)
 - Needed for sea level rise prediction
 - Most melt at margins
 - Ice shelf/ocean interactions
 - Basal hydrology and lubrication
- Sea ice (CICE)
 - Rapid melting
 - Move from viscous-plastic to anisotropic rheologies
 - Better representation of ice hydrology
- Quasi 2d
- Materials

Model for Prediction Across Scales (MPAS)

- Variable resolution approach
 - Voronoi tesselation
- New ocean model (MPAS-Ocn)
 - New dynamics, advection
 - Two time level, explicit and implicit options
 - Hybrid vertical coordinate
- Ice sheet models (MPAS, CHOMBO)
- Sea ice models

Computational Challenges in Acceleration

- No results yet
 - Legacy models:
 - Flat profile, no column physics
 - Stencil ops, memory bandwidth
 - Clean break and design MPAS
- Data layout
 - Index reordering (vert, tracer)
 - Indirect addressing, coalescence for unstructured grids
 - Retain in GPU, not stencil kernels
- Getting enough work
 - Scaling vs acceleration
 - Quasi-2d, increase vert resolution, more tracers
 - Opportunity: New algorithms
 - Higher order, better transport,
 MPM or gran flow in ice, better

Chlorophyll from eddy-resolving ocean simulation including biogeochemical interactions

Computational Challenges in Acceleration

Time integration

- Barotropic split: implicit or explicit subcycling
- Solvers (esp. barotropic)
 communication intensive, but
 only need move 2-d
- Implicit JFNK approaches for other time issues
- Ensembles
 - UQ
 - Decadal prediction (EnKF)
- Coupling
 - Data motion
 - Regridding
 - More integration at interfaces (implies more comms)

